Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation
The two-dimensional cubic nonlinear Schrödinger equation (NLS) is used as a model of a wide variety of physical phenomena. In this paper, we study the stability of a class of its one-dimensional, periodic, traveling-wave solutions. First, we establish that all such solutions are unstable with respect to two-dimensional perturbations with long wavelengths in the transverse dimension. Second, we ...
متن کاملInstabilities in the two-dimensional cubic nonlinear Schrödinger equation.
The two-dimensional cubic nonlinear Schrödinger equation (NLS) can be used as a model of phenomena in physical systems ranging from waves on deep water to pulses in optical fibers. In this paper, we establish that every one-dimensional traveling wave solution of NLS with linear phase is unstable with respect to some infinitesimal perturbation with two-dimensional structure. If the coefficients ...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملArtificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica D: Nonlinear Phenomena
سال: 2006
ISSN: 0167-2789
DOI: 10.1016/j.physd.2005.12.001